Corrosion Behavior of 16Cr3NiWMoVNbE Steel in Typical Atmospheric Environments

WANG Xiaohui, LIU Zhenbao, JIANG Dongchen, JIANG Lipeng, ZHU Shuo, ZHAO Wenyu, LIANG Jianxiong, YANG Zhiyong

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 140-147.

PDF(26610 KB)
PDF(26610 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 140-147. DOI: 10.7643/ issn.1672-9242.2025.12.018
Environmental Test and Observation

Corrosion Behavior of 16Cr3NiWMoVNbE Steel in Typical Atmospheric Environments

  • WANG Xiaohui, LIU Zhenbao, JIANG Dongchen, JIANG Lipeng, ZHU Shuo, ZHAO Wenyu, LIANG Jianxiong, YANG Zhiyong
Author information +
History +

Abstract

The work aims to investigate the natural corrosion laws of 16Cr3NiWMoVNbE steel in Wanning, Jiangjin, and Xishuangbanna. The corrosion law was studied by means of mechanical property test, corrosion rate, pitting corrosion rate and microstructure analysis. After 2 years of atmospheric exposure, the steel in Xishuangbanna exhibited the lowest annual average corrosion rate (7.29 g/(m2·a)) and pitting corrosion rate (64.21 μm/a), whereas the steel in Wanning showed the highest values of 69.60 g/(m2·a) and 122.65 μm/a. The tensile strength of the steel decreased by 22.4%, 9.2%, and 4.5% in Wanning, Jiangjin, and Xishuangbanna, respectively after 2 years of atmospheric exposure, while the elongation after fracture decreased by 48.9%, 9.6%, and 2.1%. These results indicated that the damp hot marine environment in Wanning had a more pronounced adverse effect on mechanical properties. Pitting corrosion is the primary cause of the reduction in mechanical property and the MC and M7C3 carbides in the steel promote pitting corrosion.

Key words

16Cr3NiWMoVNbE steel / exposure test / atmospheric environment / corrosion / mechanical properties / carbides

Cite this article

Download Citations
WANG Xiaohui, LIU Zhenbao, JIANG Dongchen, JIANG Lipeng, ZHU Shuo, ZHAO Wenyu, LIANG Jianxiong, YANG Zhiyong. Corrosion Behavior of 16Cr3NiWMoVNbE Steel in Typical Atmospheric Environments[J]. Equipment Environmental Engineering. 2025, 22(12): 140-147 https://doi.org/10.7643/ issn.1672-9242.2025.12.018

References

[1] 王斌, 何燕萍, 王昊杰, 等. 航空齿轮钢16Cr3NiWMoVNbE的真空低压渗碳[J]. 材料研究学报, 2020, 34(1): 35-42.
WANG B, HE Y P, WANG H J, et al.Vacuum Low-Pressure Carburization of Gear Steel 16Cr3NiWMoVNbE for Aviation[J]. Chinese Journal of Materials Research, 2020, 34(1): 35-42.
[2] 谢成, 朱戈阳, 寻丹, 等. 16Cr3NiWMoVNbE渗碳淬火组织与热物理力学性能的数值模拟[J]. 湖南科技大学学报(自然科学版), 2018, 33(1): 78-83.
XIE C, ZHU G Y, XUN D, et al.Simulation of Carburizing Quenched Microstructure and Thermo-Physical Mechanical Properties for 16Cr3NiWMoVNbE Steel[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2018, 33(1): 78-83.
[3] 方园园, 刘伟, 姚金鑫, 等. 16Cr3NiWMoVNbE航空齿轮弹振珩磨光整表面完整性试验研究[J]. 航空制造技术, 2023, 66(16): 124-130.
FANG Y Y, LIU W, YAO J X, et al.Surface Integrity Analysis of 16Cr3NiWMoVNbE Gear after Elastic Vibration Honing Finishing[J]. Aeronautical Manufacturing Technology, 2023, 66(16): 124-130.
[4] 罗富文, 苟刚, 钟杰, 等. 16Cr3NiWMoVNbE钢航空齿轮滚磨光整加工试验研究[J]. 航空维修与工程, 2024(8): 27-30.
LUO F W, GOU G, ZHONG J, et al.Experimental Study on Barrel Finishing of 16Cr3NiWMoVNbE Aircraft Gear[J]. Aviation Maintenance & Engineering, 2024(8): 27-30.
[5] WANG H J, WANG B, WANG Z D, et al.Optimizing the Low-Pressure Carburizing Process of 16Cr3NiWMoVNbE Gear Steel[J]. Journal of Materials Science & Technology, 2019, 35(7): 1218-1227.
[6] 马俊, 张建国, 王泓, 等. 温度对齿轮钢16Cr3NiWMoVNbE应变疲劳性能的影响[J]. 机械科学与技术, 2011, 30(6): 883-887.
MA J, ZHANG J G, WANG H, et al.Effect of Temperature on Low-Cycle Fatigue Properties of 16Cr3NiWMoVNbE Gear Steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(6): 883-887.
[7] 于慧臣, 张仕朝, 李影. 不同温度下16Cr3NiWMoVNbE结构钢的低周疲劳行为[J]. 机械工程材料, 2014, 38(2): 44-47.
YU H C, ZHANG S C, LI Y.Low Cycle Fatigue Behaviors of Structural Steel 16Cr3NiWMoVNbE at Different Temperatures[J]. Materials for Mechanical Engineering, 2014, 38(2): 44-47.
[8] 李建新, 罗志强, 程世超, 等. 16Cr3NiWMoVNbE齿轮钢的疲劳性能与裂纹萌生[J]. 金属热处理, 2020, 45(7): 167-173.
LI J X, LUO Z Q, CHENG S C, et al.Fatigue Performance and Crack Initiation of 16Cr3NiWMoVNbE Gear Steel[J]. Heat Treatment of Metals, 2020, 45(7): 167-173.
[9] 令狐喜欢, 赵杨. 某装备舵杆开裂原因分析及解决[J]. 装备制造技术, 2014(12): 122-124.
LINGHU X H, ZHAO Y.Analysis and Solution of the Rudder Stock Cracks of One Equipment[J]. Equipment Manufacturing Technology, 2014(12): 122-124.
[10] 曾文波, 揭敢新, 张晓东, 等. 汽车整车濒海热带沙漠环境失效行为研究[J]. 环境技术, 2019, 37(2): 43-45.
ZENG W B, JIE G X, ZHANG X D, et al.Study on Failure Behavior of Vehicle in Coastal Tropical Desert[J]. Environmental Technology, 2019, 37(2): 43-45.
[11] 罗来正, 肖勇, 苏艳, 等. 7050高强铝合金在我国四种典型大气环境下腐蚀行为研究[J]. 装备环境工程, 2015, 12(4): 49-53.
LUO L Z, XIAO Y, SU Y, et al.Corrosion Behavior of 7050 High-Strength Aluminum Alloy in Four Typical Atmospheric Environments in China[J]. Equipment Environmental Engineering, 2015, 12(4): 49-53.
[12] ZHAO Q Y, ZHAO J B, CHENG X Q, et al.Galvanic Corrosion of the Anodized 7050 Aluminum Alloy Coupled with the Low Hydrogen Embrittlement CdTi Plated 300M Steel in an Industrial-Marine Atmospheric Environment[J]. Surface and Coatings Technology, 2020, 382: 125171.
[13] SUN M H, DU C W, LIU Z Y, et al.Fundamental Understanding on the Effect of Cr on Corrosion Resistance of Weathering Steel in Simulated Tropical Marine Atmosphere[J]. Corrosion Science, 2021, 186: 109427.
[14] 孙有美, 赵全成, 李茜, 等. FN04Mo在七种典型大气环境下的力学性能变化规律及腐蚀机理[J]. 材料导报, 2021, 35(18): 18182-18189.
SUN Y M, ZHAO Q C, LI Q, et al.Mechanical Properties and Corrosion Mechanism of the FN04Mo on 7 Kinds of Typical Atmospheric Environment[J]. Materials Reports, 2021, 35(18): 18182-18189.
[15] 高立军, 张涛, 李学涛, 等. 典型耐候钢在江津大气环境中暴晒1 a的腐蚀行为[J]. 装备环境工程, 2023, 20(8): 114-121.
GAO L J, ZHANG T, LI X T, et al.Corrosion Behavior of Weathering Steel in Jiangjin Atmospheric Environment for 1 a[J]. Equipment Environmental Engineering, 2023, 20(8): 114-121.
[16] 赵起越, 仲莹莹, 郑玉侠, 等. TM210A马氏体时效钢在典型大气环境中的腐蚀行为研究[J]. 装备环境工程, 2025, 22(1): 106-113.
ZHAO Q Y, ZHONG Y Y, ZHENG Y X, et al.Corrosion Behavior of TM210A Maraging Steel in Typical Atmospheric Environments[J]. Equipment Environmental Engineering, 2025, 22(1): 106-113.
[17] 张晓云, 刘明, 汤智慧, 等. 40CrNi2Si2MoVA超高强度钢海洋大气环境腐蚀行为研究[J]. 腐蚀科学与防护技术, 2014, 26(5): 413-419.
ZHANG X Y, LIU M, TANG Z H, et al.Marine Atmospheric Corrosion of 40CrNi2Si2MoVA High Strength Steel[J]. Corrosion Science and Protection Technology, 2014, 26(5): 413-419.
[18] 张芮辉, 张弛, 夏志新, 等. T91铁素体耐热钢析出相的优化控制[J]. 金属学报, 2013, 49(9): 1075-1080.
ZHANG R H, ZHANG C, XIA Z X, et al.Optimizing Control of Precipitates in T91 Ferritic heat-Resistan Steel[J]. Acta Metallurgica Sinica, 2013, 49(9): 1075-1080.
[19] 黄贞益, 肖亚, 侯清宇, 等. 回火温度和冷却方式对T91钢组织性能的影响[J]. 钢铁, 2015, 50(8): 71-76.
HUANG Z Y, XIAO Y, HOU Q Y, et al.Effect of Temper Temperature and Cooling Rate on the Microstructure and Properties of T91 Alloy Steel[J]. Iron & Steel, 2015, 50(8): 71-76.
[20] BONAGANI S K, BATHULA V, KAIN V.Influence of Tempering Treatment on Microstructure and Pitting Corrosion of 13 wt.% Cr Martensitic Stainless Steel[J]. Corrosion Science, 2018, 131: 340-354.
[21] MAN C, DONG C F, KONG D C, et al.Beneficial Effect of Reversed Austenite on the Intergranular Corrosion Resistance of Martensitic Stainless Steel[J]. Corrosion Science, 2019, 151: 108-121.
[22] ZHAO Y G, LIU W, ZHANG T Y, et al.Assessment of the Correlation between M23C6 Precipitates and Pitting Corrosion Resistance of 0Cr13 Martensitic Stainless Steel[J]. Corrosion Science, 2021, 189: 109580.
[23] 卢道胜, 陈宇凡, 魏安超, 等. 析出相及夹杂物对L80-9Cr钢耐蚀性的影响[J]. 腐蚀与防护, 2024, 45(6): 21-28.
LU D S, CHEN Y F, WEI A C, et al.Effects of Precipitates and Inclusions on Corrosion Resistance of L80-9Cr Steel[J]. Corrosion & Protection, 2024, 45(6): 21-28.
[24] 王晓辉, 刘振宝, 梁剑雄, 等. 不同海域Custom450高强度不锈钢的腐蚀规律研究[J]. 装备环境工程, 2024, 21(3): 97-104.
WANG X H, LIU Z B, LIANG J X, et al.Corrosion Law of Custom450 High Strength Stainless Steel in Different Sea Areas[J]. Equipment Environmental Engineering, 2024, 21(3): 97-104.
[25] 曲丽娟. 固溶和时效处理对Fe-Mn-Al-Cr-Ni-C轻质钢组织和腐蚀行为的影响[D]. 长春: 长春工业大学, 2024.
QU L J.Effect of Solution and Aging Treatment on Microstructure and Corrosion Behavior of Fe-Mn-Al-Cr-Ni-C Light Steel[D]. Changchun: Changchun University of Technology, 2024.
PDF(26610 KB)

Accesses

Citation

Detail

Sections
Recommended

/